Restricted Rotation Involving the Tetrahedral Carbon. LII. Rotational Barriers in 1,2,3,4-Tetrafluoro- and 1,4Dimethoxy-9-(1-cyano-1-methylethyl)triptycenes¹⁾

NOTES

Gaku Yамамото, Akira Талака, Masahiko Suzuki, Yasuji Morita, and Michinori Ōki*

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113 (Received September 2, 1983)

Synopsis. Kinetic measurements of rotamer isomerization of the title compounds show that the rotational barriers in these compounds are considerably higher than those in the *peri*-unsubstituted and the *peri*-chloro or *peri*methyl compounds, affording a support to our earlier finding that the rotational barrier increases and then decreases as the *peri*-substituent becomes bulkier in 9-t-alkyltriptycenes.

We have shown that introduction of a chloro or a methyl group into a *peri*-position of 9-(1-cyano or methoxycarbonyl-1-methylethyl)triptycene (1 and 2) causes a decrease of the energy barrier to rotation about the bridgehead-to-substituent bond relative to the *peri*-unsubstituted compound.²⁾ A more extensive study on the effect of the *peri*-substituent on the rotational barrier in 9-(1,1-dimethyl-2-phenylethyl)triptycenes (3) revealed that a relatively small *peri*-substituent such

as fluoro and methoxyl raises the barrier relative to the *peri*-unsubstituted compound **3a**, while a *peri*-group bulkier than chloro decreases the barrier. Molecular deformation in this highly congested system might partly explain these phenomena. These findings urged us to examine whether a fluoro or a methoxyl group at a *peri*-position raises the rotational barrier in compounds **1** and **2** as well. The results are presented in this note.

Results and Discussion

Reactions of 9-(1-cyano-1-methylethyl)anthracene with tetrafluoro- and 3,6-dimethoxybenzynes gave stereoselectively the $\pm sc$ atropisomers of 1b and 1c, respectively. Kinetic measurements of isomerization were carried out in 1-chloronaphthalene at three to four points of temperature. The equilibrium and rate constants obtained are compiled in Table 1 and the kinetic parameters therefrom are given in Table 2. The rotational barriers in these compounds are actually higher not only than that in the peri-unsubstituted derivative **la** but also than those in the *peri*-chloro (**ld**) and the peri-methyl (le) compounds. As shown in Fig. 1, the dependence of the energy barrier upon the perisubstituent in compounds 1 is very similar to that found in compounds 3. This clearly shows that the appearance of the maximal barrier at a relatively small

Table 1. Equilibrium and rate constants $ap \xrightarrow[k_{-1}]{k_1} \pm sc : K = k_1/k_{-1}$

Compd	Temp °C	K	$\frac{k_1}{s^{-1}}$
1b	240	1.66	1.44×10-4
	211	1.83	1.52×10^{-5}
	196	1.93	4.53×10^{-6}
. 1c	220	4.11	1.09×10^{-4}
	211	4.39	4.24×10^{-5}
	197	4.73	1.60×10^{-5}
	189	4.36	7.90×10^{-6}

Table 2. Eyring parameters for isomerization^{a)}

Compd	Process	$\frac{\Delta H^*}{ ext{kcal mol}^{-1}}$	ΔS* cal mol ⁻¹ K ⁻¹	$\frac{\Delta G_{478}^{*}}{ ext{kcal mol}^{-1}}$
1b	ap→±sc	36.7±3.6	-5.7 ± 7.3	39.4
	±sc→ap	38.4±2.8	-3.5 ± 5.6	40.0
1c	ap→±sc	36.2±9.9	-4.4 ± 20.8	38.3
	±sc→ap	37.4±11.9	-4.9 ± 24.9	39.7

a) 1 cal = 4.184 J.

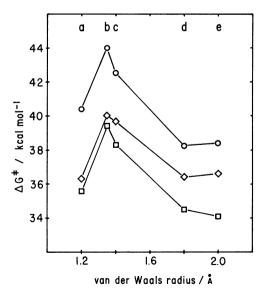


Fig. 1. Dependence of rotational barriers on the bulkiness of the *peri*-substituents. $\Box: \Delta G_{173}^* \text{ for } ap \rightarrow \pm sc \text{ in } \mathbf{1}. \Leftrightarrow: \Delta G_{173}^* \text{ for } \pm sc \rightarrow ap$

in 1. $\bigcirc: \Delta G_{500}^*$ for $ap \rightarrow \pm sc$ in 3.

peri-substituent is a general phenomenon in 9-t-alkyltriptycenes.

The equilibrium constant at 200 °C, $K_{473}(\pm sc/ap)$, becomes larger as the *peri*-substituent becomes bulkier with an exception of 1b:1a, 2.3; 1b, 1.9; 1c, 4.4; 1d, 6.8; 1e, 15. This trend is reasonable from the standpoint of steric effects because methyl is bulkier than cyano. Deviation from the trend by 1b, where K_{473} is smaller than the statistical value of 2.0, may be ascribed to the electrostatic repulsion between the fluoro and cyano groups overweighing the steric effect.

9-(1-Methoxycarbonyl-1-methylethyl)anthracene failed to react with tetrafluorobenzyne to give 2b, but reacted with 3,6-dimethoxybenzyne to afford stereoselectively the $\pm sc$ rotamer of 2c. Heating a sample of $\pm sc$ -2c in 1-chloronaphthalene for ca. 5 h at 189 °C caused the complete equilibration of the rotamers but the equilibrium population of ap-2c was ca. 2-3%, which made the kinetic measurement of isomerization impossible. The overwhelming abundance of the $\pm sc$ rotamer may be due to the attractive interaction between the methoxycarbonyl and the perimethoxyl groups in $\pm sc$ -2c together with the steric effect also favoring the $\pm sc$ rotamer.

Experimental

Melting points are not corrected. ¹H NMR spectra were recorded on a Varian EM-390 spectrometer at 90 MHz at ambient temperature of ca. 35 °C. Experimental procedures of the kinetic measurements were described before.^{2,3)}

9-(1-Cyano-1-methylethyl)-1,2,3,4-tetrafluorotriptycene (1b). Reaction of 9-(1-cyano-1-methylethyl)anthracene²⁾ with pentafluorophenyllithium according to the procedure described in the literature⁵⁾ followed by column chromatography on silica gel with hexane-benzene as the eluent gave $\pm sc$ -1b in 41% yield, mp 239—240 °C (from tetrahydrofuran-hexane). Found: C, 73.23; H, 3.78; N, 3.66%. Calcd for C₂₄H₁₅F₄N: C, 73.28; H, 3.78; N, 3.56%. ¹H NMR (CDCl₃, δ): 2.39 (3H, d, J=7.0 Hz), 2.43 (3H, s), 5.73 (1H, br d, J=1.8 Hz), 7.0—7.2 (4H, m), 7.3—7.7 (3H, m), 8.0—8.2 (1H, m). The ap rotamer of 1b was purely isolated from the equilibrated mixture of

rotamers by column chromatography on silica gel, mp 231—232 °C (from tetrahydrofuran-hexane). Found: C, 73.11; H, 3.77; N, 3.56%. ¹H NMR (CDCl₃, δ): 2.41 (6H, d, J=6.3 Hz), 5.77 (1H, br d, J=1.8 Hz), 7.0—7.2 (4H, m), 7.3—7.6 (2H, m), 7.8—8.1 (2H, m).

9-(1-Cyano-1-methylethyl)-1,4-dimethoxytriptycene (1c). Reaction of 9-(1-cyano-1-methylethyl)anthracene²⁾ with 3,6-dimethoxyanthranilic acid⁶⁾ according to the general procedure described before³⁾ gave $\pm sc$ -1c in 50% yield, mp 293—296 °C (from tetrahydrofuran-ethanol). Found: C, 81.81; H, 5.83; N, 3.63%. Calcd for C₂₆H₂₃NO₂: C, 81.86; H, 6.08; N, 3.67%. ¹H NMR (CDCl₃, δ): 2.40 (3H, s), 2.42 (3H, s), 3.81 (3H, s), 3.82 (3H, s), 5.85 (1H, s), 6.58 (2H, s), 6.9—7.1 (4H, m), 7.3—7.7 (3H, m) 8.1—8.3 (1H, m). Column chromatography of the equilibrated rotamer mixture on alumina gave ap-1c, mp 297—298.5 °C (from ethanol). Found: C, 81.64; H,5.92; N, 3.64%. ¹NMR (CDCl₃, δ): 2.43 (6H, s), 3.72 (3H, s), 3.82 (3H, s), 5.90 (1H, s), 6.58 and 6.67 (2H, AB-q, J=9 Hz), 6.9—7.1 (4H, m), 7.3—7.5 (2H, m), 7.9—8.1 (2H, m).

 \pm sc-1,4-Dimethoxy-9-(1-methoxycarbonyl-1-methylethyl)trip-tycene (\pm sc-2c), mp 222—224 °C, was synthesized similarly as \pm sc-1c from 9-(1-methoxycarbonyl-1-methylethyl)anthracene²⁾ and 3,6-dimethoxyanthranilic acid⁶⁾ in 6% yield. Found: C, 78.28; H, 6.38%. Calcd for C₂₇H₂₆O₄: C, 78.24; H, 6.32%. ¹H NMR (CDCl₃, δ): 2.18 (6H, s),⁷⁾ 3.59 (3H, s), 3.65 (3H, br s), 3.80 (3H, s), 5.84 (1H, s), 6.48 and 6.59 (2H, AB-q, J=9 Hz), 6.7—7.1 (4H, m), 7.2—7.9 (4H, m).

References

- 1) Part LI: G. Yamamoto, Y. Tanaka, and M. Ōki, Bull. Chem. Soc. Jpn., **56**, 3028 (1983).
- 2) S. Otsuka, T. Mitsuhashi, and M. Ōki, Bull. Chem. Soc. Jpn., 52, 3663 (1979); S. Otsuka, G. Yamamoto, T. Mitsuhashi, and M. Ōki, ibid., 53, 2095 (1980). Jpn., 52, 3663 (1979); S. Otsuka, G. Yamamoto, T. Mitsuhashi, and M. Ōki, ibid., 53, 2095 (1980).
- 4) M. Ōki, G. Izumi, G. Yamamoto, and N. Nakamura, Bull. Chem. Soc. Jpn., 55, 159 (1982).
- 5) J. P. N. Brewer, H. Heaney, S. V. Ley, and T. Ward, J. Chem. Soc., Perkin Trans. 1, 1974, 2688.
- 6) M. Öki, Y. Tanaka, G. Yamamoto, and N. Nakamura, Bull. Chem. Soc. Ipn., 56, 302 (1983).
- 7) The *gem*-dimethyl protons are accidentally isochronous. In benzene two singlets are observed for them.